# Взаимное расположение прямых в пространстве

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Два отрезка называются параллельными, если они лежат на паралельных прямых.

# Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.

**Определение.** Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)

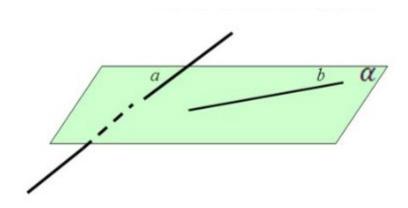


Рисунок 1 – скрещивающиеся прямые

На прошлом уроке в качестве наглядного примера нами был приведен куб.

Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.

Примеры скрещивающихся прямых вокруг нас:

Одна дорога проходит по эстакаде, а другая под эстакадой





Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.

**Теорема.** Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

### Доказательство.

Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскость в точке D, не лежащей на прямой AB (рис. 2).

- 1. Допустим, что прямые AB и CD всё-таки лежат в одной плоскости.
  - 2. Значит эта плоскость идёт через прямую AB и точку D, то есть она совпадает с плоскостью а
  - 3. Это противоречит условиям теоремы, что прямая CD не находится в плоскости  $\alpha$ , а пересекает её. Теорема доказана.

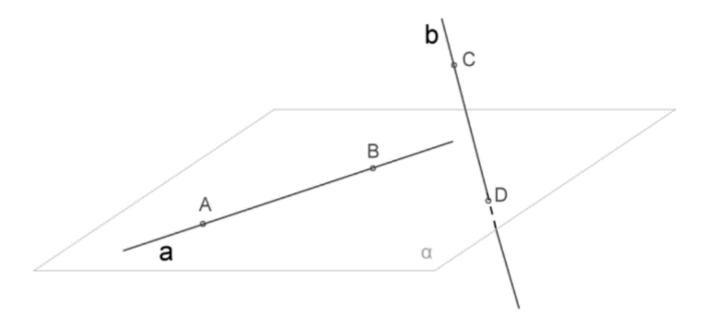
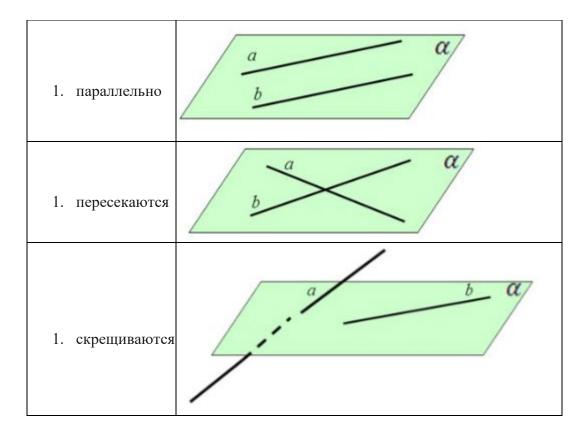


Рисунок 2 – скрещивающиеся прямые AB и CD

Итак, возможны три случая расположения прямых в пространстве:



Разберем и докажем еще одну теорему о скрещивающихся прямых.

**Теорема.** Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

## Доказательство

Рассмотрим скрещивающиеся прямые АВ и СО.(рис. 3)

- 1. Через точку D можно провести прямую DE параллельную AB.
- 2. Через пересекающиеся прямые CD и DE можно провести плоскость а
- 3. Так как прямая AВ не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.
- 4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна. Теорема доказана.

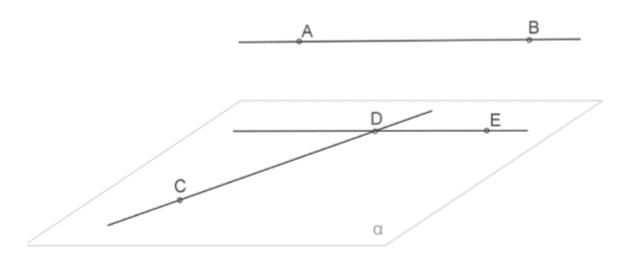


Рисунок 3 – прямые AB, CD, DE

Любая прямая, например  $OO_1$ , рассекает плоскость на две полуплоскости. Если лучи OA и  $O_1A_1$  параллельны и лежат в одной полуплоскости, то они называются сонаправленными.

Лучи  $O_1A_1$  и OA не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)

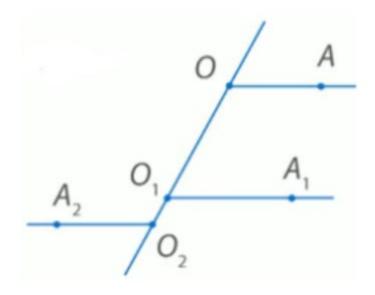


Рисунок 4 – сонаправленные лучи

**Теорема.**Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)

## Доказательство:

при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.

1. Стороны углов сонаправлены, а, значит, параллельны. Проведем через них плоскости- как показано на чертеже.

Отметим на сторонах угла О произвольные точки А и В.

На соответствующих сторонах угла  $O_1$  отложим отрезки  $OA_1$  и  $O_1B_1$  равные соответственно OA и OB.

2. В плоскости рассмотрим четырехугольник ОАА<sub>1</sub>О<sub>1</sub>.

Так как противолежащие стороны OA и  $O_1A_1$  этого четырехугольника равны и параллельны по условию, то этот четырехугольник— параллелограмм и, следовательно, равны и параллельны стороны  $AA_1$  и  $OO_1$ .

- 3. В плоскости, аналогично можно доказать, что  $OBB_1O_1$  параллелограмм, поэтому равны и параллельны стороны  $BB_1$  и  $OO_1$ .
- 4. Если две отрезка  $AA_1$  и  $BB_1$  равны параллельны третьему отрезку  $OO_1$ , значит, они равны и параллельны, т. е.  $AA_1 \| BB_1$  и  $AA_1 = BB_1$ .

По определению четырехугольник  $ABB_1A_1$  — параллелограмм и из этого получаем  $AB=A_1B_1$ .

5.Из выше построенного и доказанного  $AB=A_1B_1$ ,  $OA=O_1A_1$  и  $OB=O_1B_1$  следует, что треугольники AOB и  $A_1$   $O_1$   $B_1$ . равны по трем сторонам, и поэтому  $O=O_1$ .

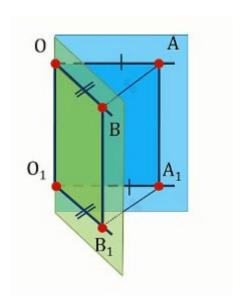


Рисунок 5 – равные углы с сонаправленными сторонами

Любые две пересекающиеся прямые лежат в одной плоскости и образуют четыре неразвернутых угла. Если известен один из этих углов, то можно найти и другие три угла. Пусть а - тот из углов, который не превосходит любого из трех остальных углов. Тогда говорят, что угол между пересекающимися прямыми равен а. Очевидно,  $0^{\circ} < a \le 90^{\circ}$ .

Введем теперь понятие угла между **скрещивающимися прямыми**(рис. 6, 7). Пусть AB и CD- две скрещивающиеся прямые (рис. а.) Через произвольную точку  $M_1$  проведем прямые  $A_1B_1$  и  $C_1D_1$ , соответственно параллельные прямым AB и CB (рис. б). Если угол между прямыми  $A_1B_1$  и  $C_1D_1$  равен  $\phi$ , то будем говорить, что **угол между** 

**скрещивающимися прямыми АВ и СD равен ф**. Докажем, что угол между скрещивающимися прямыми не зависит от выбора точки M<sub>1</sub>.

Действительно, возьмем любую другую точку  $M_2$  и проведем через нее прямые  $A_1B_1$  и  $C_1D_1$ , соответственно параллельные прямым AB и CD (рис. б).

Так как  $A_1B_1\|A_1B_1$ ,  $C_1D_1\|C_1D_1$ , то стороны углов с вершинами  $M_1$  и  $M_1$  попарно сонаправлены (рис. б, такими углами являются  $\bot A_1M_1C_1$  и  $\bot A_1M_1C_1$ ,  $\bot A_1M_1D_1$  и  $\bot A_1M_1D_1$  и т.д.) Поэтому эти углы соответственно равны. Отсюда следует, что угол между прямыми  $A_1B_1$  и  $C_1D_1$  также равен  $\phi$ . В качестве точки M, можно взять любую точку на одной из скрещивающихся прямых.

На рисунке в на прямой CD отмечена точка M и через нее проведена прямая A'B', параллельная AB. Угол между прямыми A'B' и CD также равен φ.

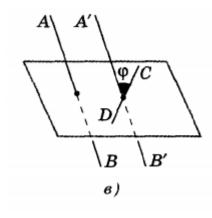


Рисунок 6 – угол между скрещивающимися прямыми

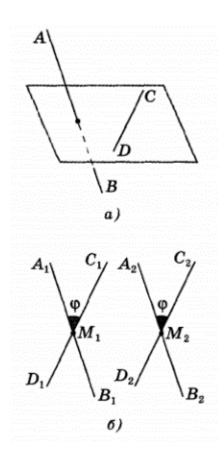


Рисунок 7 – угол между скрещивающимися прямыми

# Примеры и разбор решения заданий тренировочного модуля

**Пример 1.** Прямая с пересекает прямую а и не пересекает прямую b, параллельна прямой а. Докажите, что b и с- скрещивающиеся прямые .

# Доказательство:

- 1. a||b- через a и b проведем плоскость  $\alpha$  (эта плоскость существует по определению параллельных прямых);
- 2. пусть с пересекает а в точке M. а $\|b\Rightarrow$  M ∉b.
- 3. по теореме о признаке скрещивающихся прямых, с и в скрещиваются.

# Пример 2. Выделите цветом верный ответ:

Дано: OB||CD

ОА и CD- скрещивающиеся

 $\triangle$  AOB= 40°

**Найти:** угол между ОА и CD

- 1. **50**°
- 2. **40**°
- 3. **140**°

#### Решение:

- 1.  $D \in A_1D$ ,  $A_1D||AO$
- 2. угол между OA и  $CD = \bot A_1DC$
- 3.  $\bot A_1DC = \bot AOB = 40^{\circ}$ .

Otbet:  $\bot A_1DC=40^{\circ}$ .

Правильный ответ:

- 1. **50**°
- 2. **40**°
- 3. 140°

Параллельность прямых и плоскостей

#### Прямые

*Параллельные прямые* - прямые в пространстве, которые лежат в одной плоскости и не пересекаются.

Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Лемма о пересечении плоскости параллельными прямыми. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

### Прямая и плоскость

Три случая взаимного расположения прямой и плоскости в пространстве:

- 1. Прямая лежит в плоскости.
- 2. Прямая и плоскость имеют только одну общую точку (т.е. пересекаются).
- 3. Прямая и плоскость не имеют ни одной общей точки.

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости:

Если прямая, не принадлежащая плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельно данной плоскости.

Свойство прямой, параллельной плоскости:

Если в одной из пересекающихся плоскостей лежит прямая, параллельная другой плоскости, то она параллельна линии пересечения плоскостей.

#### Плоскости

Параллельные плоскости – плоскости, не имеющие общих точек.

Признаки параллельности плоскостей:

- Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
- Если две плоскости перпендикулярны одной и той же прямой, то эти плоскости параллельны.
  - Свойства параллельных плоскостей:
- Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.
- Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.